Energy recovery from tubular microbial electrolysis cell with stainless steel mesh as cathode

نویسندگان

  • Xiaoli Ma
  • Zhifeng Li
  • Aijuan Zhou
  • Xiuping Yue
چکیده

In comparison to the transportation and storage of hydrogen, methane has advantages in the practical application, while the emerging product termed as 'biohythane' could be an alternative to pure hydrogen or methane in a new form of energy recovery from microbial electrolysis cell (MEC). However, the cathodic catalyst even for biohythane still bothers the performance and cost of total MEC. Herein, we fabricated the MEC reactor with surrounding stainless steel mesh (SSM) to investigate the feasibility of stainless steel mesh as an alternative to precious metal in biohythane production. The columbic efficiency (CE) of anode was around at 80%, representing the SSM would not limit the activity of anodic biofilm; the SEM image and ATP results accordingly indicated the anodic biofilm was mature and well constructed. The main contribution of methanogens that quantified by qPCR belonged to the hydrogenotrophic group (Methanobacteriales) at cathode. The energy efficiency reached more than 100%, reached up to approximately 150%, potentially suggesting the energetic feasibility of the application to obtain biohythane with SSM in scale-up MEC. Benefiting from the likely tubular configuration, the ohmic resistance of cathode was very low, while the main limitation associated with charge transfer was mainly caused by biofilm formation. The total performances of SSM used in the tubular configuration for biohythane production provide an insight into the implementation of non-precious metal in future scale-up pilot with energy recovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphate recovery as struvite within a single chamber microbial electrolysis cell.

An energy efficient method of concurrent hydrogen gas and struvite (MgNH(4)PO(4)·6H(2)O) production was investigated based on bioelectrochemically driven struvite crystallization at the cathode of a single chamber microbial electrolysis struvite-precipitation cell (MESC). The MESC cathodes were either stainless steel 304 mesh or flat plates. Phosphate removal ranged from 20% to 40%, with higher...

متن کامل

Author's personal copy Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 12 A/m, hydrogen yield of 3.2 0.3 mol H2/mol acetat...

متن کامل

Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells

BACKGROUND Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wast...

متن کامل

None-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review

Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater.  Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...

متن کامل

None-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review

Microbial electrolysis cell (MEC) is a gripping bio-electrochemical device producing H2 gas from renewable biomass while at the same time treat wastewater.  Through extensive global research efforts in the latest decade, the performance of MECs, including energy efficiency, hydrogen production rate (HPR), and hydrogen recovery have achieved significant breakthroughs. However, employi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017